No Image

Что называется производной второго порядка

СОДЕРЖАНИЕ
4 просмотров
10 марта 2020

Всё очень просто. Вторая производная – это производная от первой производной:

Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.

Рассмотрим простейший пример. Найдем вторую производную от функции .

Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Рассмотрим более содержательные примеры.

Найти вторую производную функции

Найдем первую производную:

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :

Находим вторую производную:

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Найти вторую производную функции . Найти

Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются значительно реже. Можно рассказать о специфических приемах, формуле Лагранжа, и по мере наличия времени я обязательно напишу отдельный методический материал.

Решения и ответы:

Пример 2: Найдем производную:

Вычислим значение функции в точке :

Пример 4: Найдем производную:

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :

2) Найдем производную. Перед дифференцированием функцию выгодно упростить:


3) Вычислим значение производной в точке :

4) Подставим значения , и в формулу :



Пример 8: Преобразуем функцию:

Найдем производную:

Запишем дифференциал:

Пример 10: Найдем производную:

Запишем дифференциал:

Вычислим дифференциал в точке :

Пример 12: Найдем первую производную:

Найдем вторую производную:

Вычислим:

Автор: Емелин Александр

Производная по определению (через предел). Примеры решений

Когда человек сделал первые самостоятельные шаги в изучении математического анализа и начинает задавать неудобные вопросы, то уже не так-то просто отделаться фразой, что «дифференциальное исчисление найдено в капусте». Поэтому настало время набраться решимости и раскрыть тайну появления на свет таблицы производных и правил дифференцирования. Начало положено в статье о смысле производной, которую я настоятельно рекомендую к изучению, поскольку там мы как раз рассмотрели понятие производной и начали щёлкать задачи по теме.

Читайте также:  Msi 760gm p33 какие процессоры поддерживает

Этот же урок носит ярко выраженную практическую направленность, более того, рассматриваемые ниже примеры, в принципе, можно освоить и чисто формально (например, когда нет времени/желания вникать в суть производной). Также крайне желательно (однако опять не обязательно) уметь находить производные «обычным» методом – хотя бы на уровне двух базовых занятий: Как найти производную? и Производная сложной функции.

Но без чего-чего сейчас точно не обойтись, так это без пределов функций. Вы должны ПОНИМАТЬ, что такое предел и уметь решать их, как минимум, на среднем уровне. А всё потому, что производная функции в точке задаётся формулой:

Напоминаю обозначения и термины:
называют приращением аргумента;
приращением функции;
– это ЕДИНЫЕ символы («дельту» нельзя «отрывать» от «икса» или «игрека»).

Очевидно, что является «динамической» переменной, – константой и результат вычисления предела – ЧИСЛОМ. И в самом деле, ведь производная в точке – это число (см. практикум Простейшие задачи дифференцирования).

В качестве точки можно рассмотреть ЛЮБОЕ значение , принадлежащее области определения функции , в котором существует производная.

! Примечание: оговорка «в котором существует производная» – в общем случае существенна! Так, например, точка хоть и входит в область определения функции , но производной там не существует. Поэтому формула не применима в точке , и укороченная формулировка без оговорки будет некорректна. Это же замечание следует делать для некоторых других функций с «обрывами» графика, в частности, для арксинуса, арккосинуса, а также у функций, графики которых содержат «плохие» остриё и изломы. Данные моменты подробнее разъясняются в статье Интервалы монотонности и экстремумы функции.

Таким образом, после замены , получаем вторую рабочую формулу:

Обратите внимание на коварное обстоятельство, которое может запутать чайника: в данном пределе «икс», будучи сам независимой переменной, исполняет роль статиста, а «динамику» задаёт опять же приращение . Результатом вычисления предела является производная функция .

Исходя из вышесказанного, сформулируем условия двух типовых задач:

– Найти производную в точке, используя определение производной.

– Найти производную функцию, используя определение производной. Эта версия, по моим наблюдениям, встречается заметно чаще и ей будет уделено основное внимание.

Принципиальное отличие заданий состоит в том, что в первом случае требуется найти число, а во втором – функцию.

Не нашли то, что искали? Воспользуйтесь поиском:

Функция является сложной, если она может быть представлена в виде функции от функции у = f[φ(х)], где у =f(u), аu=φ(х), гдеuпромежуточный аргумент. Любую сложную функцию можно представить в виде элементарных функций (простых), которые являются ее промежуточными аргументами.

Читайте также:  Прозрачность фона в кореле

Простые функции: Сложные функции:

у= х 2 у = (х+1) 2 ;u= (х+1); у=u 2 ;

у = sinx; у =sin2x;u= 2х; у =sinu;

у = е х у = е 2х ;u= 2х; у = е u ;

у = lnх у =ln(х+2);u= х+2; у =lnu.

Общее правило дифференцирования сложной функции дается приведённой теоремой без доказательства.

Если функция u=φ(х) имеет производнуюu’x =φ'(х) в точке х, а функция у =f(u) производную у’u=f(u) в соответствующей точкеu, то производная сложной функции у =f[φ(х)] в точке х находится по формуле: у’х =f(u) ·u'(х).

Часто используется менее точная, но более короткая формулировка данной теоремы: производная сложной функции равна произведению производной по промежуточной переменной на производную промежуточной переменной по независимой переменной.

Пример:у =sin2x 2 ; u= 2х 2 ; у =sinu;

3. Производная второго порядка. Механический смысл второй производной.

Производную функции у =f(х) называют производной первого порядка или просто первой производной функции. Эта производная является функцией от х и её можно дифференцировать вторично. Производная от производной называется производной второго порядка или второй производной. Она обозначается: у"хх – (игрек два штриха по икс); f"(х) – (эф два штрих по икс);d 2 у/dх 2 – (дэ два игрек по дэ икс дважды);d 2 f/dх 2 – (дэ два эф по дэ икс дважды).

Исходя из определения второй производной, можно записать:

Вторая производная в свою очередь есть функция от х и ее можно дифференцировать и получить производную третьего порядка и т.д.

Механический смысл второй производной объясняется на основе мгновенного ускорения, которым характеризуют переменное движение.

Если S=f(t) – уравнение движения, то=S’t;аср. =;

амгн.= аср = =’t;амгн. = ’t = ( S’t)’t = S"tt .

Таким образом, вторая производная от пути по времени равна мгновенному ускорению переменного движения. В этом и заключается физический (механический) смысл 2-ой производной.

Пример: Пусть прямолинейное движение материальной точки происходит по законуS=t 3 /3. Ускорение материальной точки будет определяться как вторая производная S"tt:а = S"tt= (t 3 /3)" = 2t.

4. Дифференциал функции.

С понятием производной тесно связано понятие дифференциала функции, которое имеет важное практическое применение.

Функция f(х) имеет производную = f(х);

Согласно теореме (теорему не рассматриваем) о связи бесконечно малой величины α(∆х)(α(∆х)=0) с производной:= f(х)+ α (∆х), откуда ∆f = f(х) ∆х+α(∆х) · ∆х.

Из последнего равенства следует, что приращение функции состоит из суммы, каждое слагаемое которой есть бесконечно малая величина при ∆х→ 0.

Читайте также:  Как включить юнити плеер в яндекс браузере

Определим порядок малости каждой бесконечно малой величины этой суммы по отношению к бесконечно малой ∆х:

= f(х) = const.

Следовательно, бесконечно малые f (х) ∆х и ∆х имеют одинаковый порядок малости.

Вторая производная от параметрической функции и задается формулой:

Вторую производную иногда обозначают: В физике вторую производную функции по времени нередко обозначают двумя точками:

Вторая производная определяет скорость изменения скорости или ускорение. Так, если – координата материальной точки, движущейся со скоростью то ускорение этой точки равно

Важным применением второй производной является анализ выпуклости функции.

Аналогичным образом задаются производные высших порядков. Если функция дифференцируема, то ее производную называют производной -го порядка функции .

«>

Комментировать
4 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector