No Image

Соотношения в квазирезонансном бп

5 просмотров
10 марта 2020

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Полумостовой квазирезонансный блок питания

Для улучшения характеристик импульсных блоков питания, собранных на основе мостовых и полумостовых преобразователей, в частности, уменьшения вероятности возникновения сквозного тока и увеличения КПД, авторы предлагают переводить подобные источники в квазирезонансный режим работы. В описываемой статье приведен практический пример такого блока питания.

Часто для уменьшения габаритов и массы источники питания (ИП) с сетевым трансформатором заменяют импульсными преобразователями напряжения. Выигрыш от этого очевиден: меньшие масса и габариты, существенно меньший расход меди для моточных изделий, высокий КПД ИП. Однако у импульсных ИП есть и недостатки: плохая электромагнитная совместимость, возможность появления сквозного тока через транзисторы в двухтактных преобразователях, необходимость введения цепей защиты от перегрузки по току, сложность запуска на емкостную нагрузку без принятия специальных мер по ограничению зарядного тока.

Рассмотрим на примере двухтактного полумостового автогенераторного преобразователя напряжения [1], как в определенной мере можно исключить или уменьшить эти недостатки, изменив режим его работы. Переведем преобразователь в квазирезонансный режим работы, введя резонансный контур [2]. Форма тока через первичную обмотку импульсного трансформатора в этом случае показана на рис. 1.

На рис. 2 приведены формы напряжения и тока для одного из коммутирующих транзисторов. Из рисунков видно, что преобразователь работает в квазирезонансном режиме — сквозной ток в этом случае отсутствует.

Напряжение на базе коммутирующего транзистора уменьшается и к окончанию импульса становится равным нулю. Таким образом, переход на квазирезонансный режим работы полностью устраняет динамические потери в коммутирующих транзисторах и проблемы, связанные с электромагнитной совместимостью чувствительных приборов с импульсным ИП, поскольку спектр генерируемых колебаний резко сужается.

Полумостовой преобразователь отличается от двухтактного мостового меньшим числом используемых транзисторов; от двухтактного со средним выводом — вдвое меньшим напряжением на транзисторах. Автогенераторный преобразователь отличается от преобразователей с задающим генератором, прежде всего, минимальным числом элементов, максимально возможным КПД, а применение насыщающегося вспомогательного трансформатора гарантированно исключает возможность появления сквозного тока.

Схема полумостового квазирезонансного ИП, лишенного перечисленных недостатков, показана на рис. 3.


(нажмите для увеличения)

  • Интервал изменения напряжения питающей сети, В. 198. 264
  • Максимальный КПД, %. 92
  • Выходное напряжение, В, при сопротивлении нагрузки 36 Ом. 36
  • Рабочий интервал частоты преобразования, кГц. 12. 57
  • Максимальная выходная мощность, Вт. 70
  • Максимальная амплитуда пульсаций выходного напряжения с рабочей частотой, В. 2,2

ИП содержит следующие узлы: помехоподавляющий фильтр С1C2L1, который предотвращает проникновение в питающую сеть высокочастотных пульсаций, создаваемых преобразователем; сетевой выпрямитель VD1 с фильтрующим конденсатором C3; цепи защиты от перегрузки и замыканий в нагрузке R1R2VD2K1U1VD3VD4R6R7C7. Цепь защиты потребляет незначительный ток, поэтому мало влияет на общий КПД источника, но при необходимости КПД можно несколько увеличить, заменив стабилитрон VD2 более высоковольтным. Резисторы R6 и R7 образуют делитель напряжения, необходимый для включения излучающего диода тиристорного оптрона. Если эти постоянные резисторы заменить одним переменным, можно в весьма широких пределах регулировать порог срабатывания защиты. Если предполагается питать нагрузку с большой емкостью (более 5000 мкФ), для исключения ложных срабатываний защиты следует увеличить емкость конденсатора С7, однако время ожидания до включения источника в этом случае возрастет.

Элементы R3, R4, С4, С5 образуют делитель напряжения. Резисторы R3, R4 необходимы для разрядки конденсаторов фильтра C3 и делителя С4С5 после выключения блока питания. Конденсатор С6 и дроссель L2 — резонансная цепь. Запускающая цепь точно такая же, как и в устройстве, описанном в статье [1]. Она состоит из транзистора VT3, резисторов R10-R12 и конденсатора С10. Транзистор VT3 работает в лавинном режиме. Запускающий импульс открывает транзистор VT2, обеспечивая первоначальную асимметрию.

Диоды VD5-VD8 — выходной выпрямитель с фильтрующими конденсаторами C8, C9. Светодиод HL1 индицирует наличие напряжения на выходе ИП. Автогенерация колебаний происходит в результате действия положительной обратной связи с обмотки III трансформатора Т1 на обмотку III трансформатора Т2 через токоограничивающий резистор R9. При уменьшении его сопротивления частота преобразования снижается, что ведет к смещению максимума КПД источника в сторону большей мощности нагрузки.

В устройстве применены конденсаторы К73-17 (C1, C2, C6, C9, С10), К73-11 (C4, C5), К50-32 (C3), К50-24 (C7, C8). Все резисторы — C2-23. Вместо указанных конденсаторов и резисторов возможно применение других компонентов, однако конденсаторы следует выбирать с минимальным тангенсом угла диэлектрических потерь в рабочем интервале частоты преобразования ИП.

Диодный мост VD1 — любой с допустимым прямым током более 1 А и допустимым обратным напряжением не менее 400 В, например BR310. Не исключено и применение дискретных диодов, например КД202Р, соединенных по мостовой схеме. В устройстве лучше всего использовать транзистор КТ315Г (VT3) — с ним запускающая цепь будет работать сразу же, транзистор КТ315Б придется подбирать, а транзисторы КТ315А, КТ315В лучше не применять. Транзисторы КТ826В (VT1, VT2) заменимы любыми из серий КТ826 или КТ812А, КТ812Б. Вследствие малых потерь транзисторы можно не устанавливать на теплоотводы. Диоды выходного выпрямителя КД213А (VD5-VD8) допустимо заменить на КД213Б, КД213В или серий КД2997, КД2999. Их следует установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см2.

В ИП применено электромагнитное реле постоянного тока GBR10.1-11.24 с рабочим напряжением 24 В, способное коммутировать переменный ток 8 А в цепях с напряжением до 250 В. Его можно заменить любым другим с допустимым коммутируемым переменным током не менее 1 А в цепях с напряжением 250 В. Однако желательно применить реле с минимальным током включения для повышения КПД блока питания, поскольку чем меньше ток срабатывания, тем большее сопротивление должны иметь резисторы R1, R2 и меньшая мощность будет рассеиваться на них.

Дроссели L1, L2 и трансформатор Т1 использованы готовые — от старой вычислительной машины ЕС1060: L1 — И5, L2 — 4777026 или 009-01, Т1 — 052-02. Их можно изготовить и самостоятельно. Дроссель L1 наматывают (одновременно две обмотки) на кольцевом магнитопроводе К28х16х9 из феррита (например, марок М2000НМ-А или М2000НМ1-17) или альсифера. Его обмотки содержат по 315 витков провода ПЭВ-2 0,3.

Резонансный дроссель L2 наматывают на кольцевом магнитопроводе К20х10х5 из феррита М2000НМ-А. Его обмотка содержит 13 витков провода ПЭВ-2 0,6.

Трансформатор T1 наматывают на кольцевом магнитопроводе К45х28х8 из феррита М2000НМ1-17. Обмотка I содержит 200 витков провода ПЭВ-2 0,6, обмотка II — 35 витков провода ПЭВ-2 1, обмотка III — 5 витков провода ПЭВ-2 0,6. Порядок намотки обмоток на магнитопровод произвольный. Между обмотками необходимо проложить слой изоляции, например, фторопластовой ленты. Кроме того, трансформатор следует пропитать, например, парафином от свечей или церезином. Это не только повысит электрическую прочность изоляции, но и уменьшит гул, создаваемый источником на холостом ходу.

Трансформатор T2 наматывают на кольцевом магнитопроводе К20х10х5 из феррита М2000НМ-А. Обмотки I и II содержат по семь витков провода ПЭВ-2 0,3 (их наматывают одновременно в два провода), а обмотка III — девять витков провода ПЭВ-2 0,3.

Конструкция ИП может быть произвольная, взаимное расположение элементов на плате не критично. Важно лишь обеспечить хороший приток воздуха к полупроводниковым приборам естественной конвекцией или установить ИП внутри питаемого устройства вблизи вентилятора.

В налаживании описанный ИП практически не нуждается, хотя стоит удостовериться, что преобразователь работает в квазирезонансном режиме. Для этого к выходу блока питания подключают эквивалент нагрузки — резистор мощностью 100 Вт и сопротивлением 36 Ом. Последовательно с конденсатором С6 включают дополнительный резистор сопротивлением 0,1. 1 Ом и мощностью 1. 2 Вт. К дополнительному резистору подключают щупы осциллографа: общий — к средней точке делителя напряжения R3R4C4C5, сигнальный — к конденсатору С6. Необходимо убедиться, что осциллограф гальванически не связан с сетью. Если связан, к сети его следует подключить через разделительный трансформатор с коэффициентом трансформации 1:1. В любом случае необходимо соблюдать правила техники безопасности. Подав питание на ИП, убеждаются в наличии колоколообразных импульсов тока с паузой на нуле. Если форма импульсов отличается от показанной на рис. 1, необходимо подобрать число витков дросселя L2 до получения резонанса.

Читайте также:  Kerio connect установка и настройка

На дополнительном резисторе сопротивлением 0,1 Ом амплитуда импульсов должна быть около 0,1 В. Теперь следует сравнить форму тока и напряжения на коммутирующем транзисторе VT2 с приведенными на рис. 2 графиками. Если они близки по форме, ИП работает в квазирезонансном режиме.

Порог срабатывания защиты можно изменить. Для этого подбирают сопротивление резистора R7 так, чтобы защита срабатывала при требуемом токе нагрузки. Если необходимо, чтобы ИП отключался при мощности в нагрузке меньше 70 Вт, сопротивление резистора R7 следует уменьшить.

Для ограничения тока зарядки конденсатора C3 в момент включения рекомендуем в разрыв любого сетевого провода подключить резистор сопротивлением 5,6. 10 Ом мощностью 2Вт.

  1. Барабошкин Д. Усовершенствованный экономичный блок питания. — Радио, 1985, № 6, с. 51,52.
  2. Коновалов Е. Квазирезонансный преобразователь напряжения. — Радио, 1996, №2, с. 52-55.

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

Комментарии к статье:

Владимир
Схема весьма привлекательна. Но есть несколько вопросов: частота рабочая изменяется от 12 Кгц до 57 Кгц при изменении нагрузки. Стало быть и КПД тоже подвержен изменению. При какой нагрузке максимальная частота и при какой минимальная? Можно ли в схеме применить "наши" китайские радиодетали? Транзисторы, конденсаторы и ферриты. Индуктивность резонансной катушки не указана, а хорошо бы было. В остальном всё понятно и соответствует рабочим схемам с резонансной нагрузкой. Последний вопрос: схема балласта лампы дневного света является резонансной или квази резонансной? Я немного запутался в определениях.

Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки. Интересен и незаслуженно мало распространен этот вид преобразователей — квазирезонансный, который в значительной мере избавлен от недостатков других популярных схем. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В. Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97. 98% без учета потерь на выпрямителе вторичной цепи, которые, в основном, определяет ток нагрузки.

От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства. От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения. Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом, полностью снимается проблема сквозного тока, возникающего при переключении. На рис. 4.22 показана принципиальная схема автогенераторного нестабилизированного блока питания.

Основные технические характеристики:

Общий КПД блока, %. 92;

Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом . 18;

Рабочая частота преобразователя, кГц. 20;

Максимальная выходная мощность, Вт. 55;

Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В

Основная доля потерь мощности в блоке падает на нагревание’ выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

Фильтр, состоящий из конденсаторов С1. СЗ и дросселя LI, L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4, С6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

Обмотка IV трансформатора Т1 предназначена для пропорцио-нально-токового управления транзисторами. Легко видеть, что мощный разделительный трансформатор Т2 и цепи управления переключательными транзисторами (трансформатор Т1) разделены, что позволяет значительно ослабить влияние паразитной емкости и индуктивности трансформатора Т2 на формирование базового тока транзисторов. Диоды VD5 и VD6 ограничивают напряжение на конденсаторе С7 в момент запуска преобразователя, пока конденсатор С8 заряжается до рабочего напряжения.

Дроссели LI, L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Обмотки дросселя выполняют одновременно, «в два провода», проводом ПЭЛШО-0,25; число витков — 20. Обмотка I трансформатора TI содержит 200 витков провода ПЭВ-2-0,1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны «в два провода» — 4 витка провода ПЭЛШО-0,25; обмотка IV представляет собой виток такого же провода. Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛИ10-0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО-0,56; намотка — «в два провода», равномерно по кольцу.

Дроссель L3 содержит 20 витков провода ПЭЛИ10-0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсаций на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в другом варианте этого преобразователя с такими основными техническими характеристиками :

Номинальное выходное напряжение, В. 5,

Максимальный выходной ток, А. 2;

Максимальная амплитуда пульсации, мВ. 50;

Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки

от 0,5 до 2 А и напряжения сети от 190 до 250 В. 150;

Максимальная частота преобразования, кГц. 20.

Схема стабилизированного блока питания на основе квазирезо-нансного преобразователя представлена на рис. 4.23.

Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя. Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DDI. Триггер DD1.1 работает в собственно генераторе.

Импульсы имеют постоянную длительность, заданную цепью R7, С12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8, С13. Триггер DDI.2 делит частоту следования этих импульсов на два, и напряжение формы «меандр» подается с прямого выхода на транзисторный усилитель тока VT4, VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2, С7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя. Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого.

Базовый ток открытого управляющим импульсом транзистора поддерживает действие положительной ОС по току через обмотку IV трансформатора Т1. Резистор R2 служит также для демпфирования паразитных колебаний, возникающих в момент закрывания выпрямительных диодов вторичной цепи, в контуре, образованном межвитковой емкостью первичной обмотки трансформатора Т1, дросселем L3 и конденсатором С8. Эти паразитные колебания могут вызывать неуправляемое переключение транзисторов VT1, VT2. Описанный вариант управления преобразователем позволяет сохранить пропорционально-токовое управление транзисторами и, в то же время, регулировать частоту их переключения с целью стабилизации выходного напряжения.

Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал и не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его прямо от первичной сети через гасящий резистор R1. Транзистор VT3 является усилителем напряжения сигнала управления, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор СЮ и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора. После закрывания выпрямительных диодов VD8, VD9 конденсатор СЮ начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора СИ через открывшийся транзистор оптрона.

Начинается очередной процесс подзарядки конденсатора СЮ, а триггер DD1.1 через 3. 4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7, С12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полу период. При включении источника, в начальный момент, когда конденсатор СЮ полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8, С13 (постоянная времени цепи R7, С12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DDI.2 — 20 кГц. После зарядки конденсатора СЮ до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе СЮ сглаживает фильтр L4, С9. Дроссели LI, L2 и L3 — такие же, как в предыдущем блоке.

Читайте также:  Сколько уровней в gardenscapes

Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12x8x3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2-0,08. Обмотки II и III содержат по 40 витков провода ПЭЛ1110-0,15; их наматывают «в два провода». Обмотка IV состоит из 8 витков провода ПЭЛШО-0,25. Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка I — 120 витков провода ПЭЛШО-0,15, а II и III — по 6 витков провода ПЭЛ1110-0,56, намотанных «в два провода». Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два-три слоя лакоткани.

Дроссель L4 содержит 25 витков провода ПЭВ-2-0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30. 60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц. Все постоянные резисторы — MJIT. Резистор R4 — подстроенный, любого типа. Конденсаторы С1. С4, С8 — К73-17, С5, С6, С9, СЮ — К50-24, остальные — КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый. КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шоттки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.

КВАЗИРЕЗОНАНСНЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ

Автор этой статьи рассказывает о весьма перспективном виде преобразователя напряжение — квазирезонансном. Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки.

В современных сетевых блоках питания — различной аппаратуры широко используют транзисторные преобразователи напряжения. Их преимущества перед трансформаторными блоками общеизвестны — меньшие габариты и снижение расхода меди при той же отдаваемой мощности, что с лихвой окупает их сложность, особенно в серийном производстве.

Чем больше рабочая частота преобразования, тем выше его экономические показатели. Однако с увеличением частоты переключения транзисторов увеличиваются и коммутационные потери и соответственно снижается КПД преобразователя.

Значение коммутационных потерь любого преобразователя определяют в основном два фактора — наличие сквозного тока и значительное время закрывания мощных переключательных транзисторов при большом коллекторном токе. Время их открывания, как правило, в семь-десять раз меньше и существенного влияния на КПД не оказывает.

Сквозной ток возникает при переключении транзисторов в мостовых и полумостовых преобразователях. Он протекает в то время, когда транзистор одного плеча преобразователя уже открыт, а другого еще не успел закрыться.

Для устранения этого явления процесс переключения разбивают на два этапа. Сначала обеспечивают закрывание транзистора в одном из плеч, а затем, через 3. 5 мкс (типовое время закрывания мощных транзисторов), — открывание в другом. Этот способ используют в преобразователях с внешним возбуждением, но он неприменим в автогенераторных. Длительное закрывание при большом коллекторном токе приводит к тому, что в это время на закрываемом транзисторе выделяется бесполезная мощность, среднее значение которой выражает формула: P=Im*Um*F*tзакр/6,
где Im — коллекторный ток транзистора к началу его закрывания;
Um — напряжение на коллекторе после закрывания;
F — рабочая частота преобразователя;
tзакр — время закрывания транзистора.

Существуют различные схемные решения, позволяющие форсировать процесс закрывания, однако они требуют дополнительных энергетических затрат и уменьшают время закрывания, в лучшем случае не более чем в два раза от паспортного, а зачастую лишь помогают удержаться на уровне этого значения.

Кроме коммутационных, есть потери мощности из-за падения напряжения на открытом транзисторе, но они зависят лишь от выбора транзисторов и в сетевых преобразователях не превышают 0,5. 1 % от преобразуемой мощности.

Все разнообразие существующих преобразователей напряжения, как с внешним возбуждением, так и автогенераторных, можно условно разбить на несколько видов по характеру коллекторного тока и напряжения в момент коммутации. Первый и наиболее распространенный — импульсный, для которого характерен максимальный коллекторный ток к моменту закрывания транзисторов и максимальное коллекторное напряжение после.

В таком преобразователе действуют обе составляющие коммутационных потерь, поэтому при рабочей частоте 15. 25 кГц на них приходится 8. 15 % преобразуемой мощности. Несмотря на это, импульсные преобразователи наиболее распространены благодаря простоте реализации и гибкости управления выходным напряжением, что позволяет совмещать преобразование напряжения с его стабилизацией.

Второй вид — резонансный преобразователь. Упрощенным его примером может служить обычный LC-генератор с трансформаторной обратной связью и цепью автоматического смещения. Реактивные элементы коллекторной цепи рассчитывают так, чтобы либо перед закрыванием транзистора его коллекторный ток уменьшался почти до нуля, либо сразу после закрывания коллекторное напряжение было очень мало. Это позволяет снизить общие потери на переключательных транзисторах до 1 . 2 % от преобразуемой мощности и уменьшить уровень радиопомех по сравнению с импульсным преобразователем.

Однако резонансные преобразователи надежно работают только в режиме автогенератора, не допускают возможности регулирования выходного напряжения и значительного отклонения сопротивления нагрузки от расчетного значения. В целом в системе преобразователь-стабилизатор они проигрывают импульсным по КПД, так как требуют отдельного стабилизатора.

Интересен и незаслуженно мало распространен третий вид — квазирезонансный, который в значительной мере избавлен от недостатков обоих предыдущих. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В.

Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97. 98 % без учета потерь на выпрямителе вторичной цепи, которые в основном определяет ток нагрузки.

Высокий КПД в ряде случаев вообще избавляет от необходимости применять теплоотводы для мощных транзисторов преобразователя, что позволяет значительно уменьшить размеры аппаратуры, не говоря уже о прочих преимуществах экономического характера.

От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства.

От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения.

Более подробно принцип работы полумостового квазирезонансного преобразователя поясним по упрощенной схеме, представленной на рис. 1,а. Диаграммы тока и напряжения в характерных точках в установившемся режиме работы показаны на рис. 1,б. Для простоты предположим, что время переключения транзисторов бесконечно мало; это упрощение, как показала практика, не влияет на достоверность диаграмм.

Предположим также, что значения параметров элементов удовлетворяют соотношениям: LТ>>L1 и Fпт >L1.

Таким образом, с момента t1 и до момента переключения транзисторов t2 увеличение коллекторного тока определено индуктивностью первичной обмотки ненагруженного трансформатора, которую выбирают довольно большой. Фактически состояние цепи к моменту переключения соответствует режиму холостого хода. В реальных цепях роль дросселя L1 может выполнять индуктивность рассеяния трансформатора.

После закрывания транзистора VT1 и открывания VT2 происходит разрядка конденсатора С1. Ток через дроссель и обмотку I трансформатора протекает в противоположном направлении, но процессы идут по тем же законам. Необходимое условие существования описанного режима — скорость уменьшения напряжения на конденсаторе С2 при его разрядке через сопротивление нагрузки после закрывания диодов должна быть меньше скорости уменьшения напряжения на первичной обмотке трансформатора в этот же период времени, тогда выпрямительные диоды остаются закрытыми до очередного переключения транзисторов.

Для обеспечения минимальных потерь мощности прямое падение напряжения на открытом транзисторе должно быть минимальным при любом допустимом рабочем токе коллектора. Однако поддерживать для этого максимальный ток

базы на протяжении всего полупериода работы этого транзистора энергетически невыгодно, да и необходимости в этом нет. Достаточно обеспечить пропорциональность базового тока коллекторному; такое управление называют пропорционально-токовым.

Общий КПД блока, %. 92
Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом. 18
Рабочая частота преобразователя, кГц. 20
Максимальная выходная мощность, Вт. 55
Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В. 1,5

Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом полностью снимается проблема сквозного тока, возникающего при переключении.

Иначе говоря, использование квазирезонансного режима совместно с пропорционально-токовым управлением позволяет практически полностью избавиться от коммутационных потерь.

Ниже описаны два практических варианта сетевого блока питания с квазирезонансным преобразователем и пропорционально-токовым управлением. Изготовление этих блоков не вызовет больших затруднений у радиолюбителей и позволит оценить все преимущества преобразователя. Стабилизированный блок уже более двух лет работает в высокочастотном частотомере и нареканий не вызывает.

На рис. 2 показана принципиальная схема автогенераторного нестабилизированного блока питания.

Читайте также:  Reset case open status что это

Основная доля потерь мощности в блоке падает на нагревание выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

Фильтр, состоящий из конденсаторов С1-С3 и дросселя L1L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4C6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

Обмотка IV трансформатора Т1 предназначена для пропорционально-токового управления транзисторами. Легко видеть, что мощный разделительный трансформатор Т2 и цепи управления переключательными транзисторами (трансформатор Т1) разделены, что позволяет значительно ослабить влияние паразитных емкости и индуктивности трансформатора Т2 на формирование базового тока транзисторов. Диоды VD5 и VD6 ограничивают напряжение на конденсаторе С7 в момент запуска преобразователя, пока конденсатор С8 заряжается до рабочего напряжения.

При налаживании устройства необходимо удостовериться в том, что преобразователь работает в квазирезонансном режиме. Для этого последовательно с конденсатором С7 включают временный резистор сопротивлением 1 . 3 Ом мощностью 2 Вт и, подав сигнал с этого резистора на вход осциллографа, наблюдают на экране форму импульсов коллекторного тока обоих транзисторов при максимальной нагрузке.

Это должны быть разнополярно чередующиеся неперекрывающиеся по времени импульсы колоколообразной формы. Если они перекрываются, необходимо уменьшить индуктивность дросселя L3, отмотав 10. 15 % витков, или уменьшить частоту генерации преобразователя подборкой резистора R3. Заметим здесь, что не все осциллографы допускают проведение измерений в цепях, гальванически не развязанных от электрической сети.

Дроссель L1L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8х3 из феррита 2000НМ. Обмотки дросселя выполняют одновременно, "в два провода", проводом ПЭЛШО 0,25; число витков — 20. Обмотка I трансформатора Т1 содержит 200 витков провода ПЭВ-2 0.1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны "в два провода" — 4 витка провода ПЭЛШО 0,25; обмотка IV представляет собой виток такого же провода.

Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛШО 0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО 0,56; намотка — "в два провода", равномерно по кольцу. Дроссель L3 содержит 20 витков провода ПЭЛШО 0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8х3 из феррита 2000НМ.

Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

Номинальное выходное напряжение, В. 5
Максимальный выходной ток, А. 2
Максимальная амплитуда
пульсации, мВ. 50
Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки от 0,5 до 2 А и напряжения сети от 190 до 250 В. 150
Максимальная частота преобразования, кГц. 20

Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсации на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в описанном ниже блоке.

Схема стабилизированного блока питания на основе квазирезонансного преобразователя представлена на рис. 3. Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя.

Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DD1.

Триггер DD1.1 работает в собственно генераторе. Импульсы имеют постоянную длительность, заданную цепью R7C12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8C13.

Триггер DD1.2 делит частоту следования этих импульсов на два, и напряжение формы "меандр" подается с прямого выхода на транзисторный усилитель тока VT4VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2C7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя.

Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого. Базовый ток открытого управляющим импульсом транзистора поддерживает действие положительной ОС по току через обмотку IV трансформатора Т1. Резистор R2 служит также для демпфирования паразитных колебаний, возникающих в момент закрывания выпрямительных диодов вторичной цепи, в контуре, образованном межвитковой емкостью первичной обмотки трансформатора Т1, дросселем L3 и конденсатором С8. Эти паразитные колебания могут вызывать неуправляемое переключение транзисторов VT1, VT2.

Описанный вариант управления преобразователем позволяет сохранить пропорционально-токовое управление транзисторами и в то же время регулировать частоту их переключения с целью стабилизации выходного напряжения. Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал — не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его от первичной цепи через гасящий резистор R1.

Транзистор VT3 работает как усилитель напряжения сигнала управления подобно тому, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор С10 и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора.

После закрывания выпрямительных диодов VD8, VD9 конденсатор С10 начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора С13 через открывшийся транзистор оптрона. Начинается очередной процесс подзарядки конденсатора С10, а триггер DD1.1 через 3. 4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7C12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полупериод.

При включении источника, в начальный момент, когда конденсатор С10 полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8C13 (постоянная времени цепи R7C12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DD1.2 — 20 кГц.

После зарядки конденсатора С10 до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе С10 сглаживает фильтр L4C9.

Дроссели L1L2 и L3 — такие же, как в предыдущем блоке. Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12х8х3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2 0,08. Обмотки II и III содержат по 40 витков провода ПЭЛШО 0,15; их наматывают "в два провода". Обмотка IV состоит из 8 витков провода ПЭЛШО 0,25.

Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка 1-120 витков провода ПЭЛШО 0,15, а II и III — по 6 витков провода ПЭЛШО 0,56, намотанных "в два провода".

Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два — три слоя лакоткани.

Дроссель L4 содержит 25 витков провода ПЭВ-2 0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30. 60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц.

Все постоянные резисторы — МЛТ. Резистор R4- подстроечный, любого типа. Конденсаторы С1-С4, С8 — К73-17, С5, С6, С9, С10-К50-24, остальные-КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый.

Для налаживания блока необходимо подключить параллельно резистору R1 временный резистор сопротивлением 1 кОм мощностью 0,25-1 Вт и, не подключая нагрузку, подать на вход блока постоянное или переменное напряжение амплитудой 15. 20 В, а на выход — постоянное напряжение 5 В в соответствующей полярности. Движок резистора R4 установить в нижнее по схеме положение.

Вход Y осциллографа подключают к коллектору и эмиттеру транзистора VT2. На экране должны быть видны прямоугольные импульсы со скважностью 2 ("меандр") амплитудой 14. 19 В и частотой 20 кГц. Если при перемещении движка резистора R4 вверх происходит уменьшение частоты, а затем срыв колебаний, то узел стабилизации работает нормально.

Установив резистором R4 частоту в пределах 3. 5 кГц, отключают питание от входа и выхода, снимают временный резистор. К выходу блока подключают эквивалент нагрузки, а вход — к сети, и устанавливают резистором R4 выходное напряжение.

КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шотки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.

Комментировать
5 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector