No Image

Угол между двумя медианами треугольника

0 просмотров
10 марта 2020

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
  • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства [ править | править код ]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

  • Трилинейная полярацентроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения [ править | править код ]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

m a = 2 b 2 + 2 c 2 − a 2 4 , +2c^<2>-a^<2>><4>>>,> m b = 2 a 2 + 2 c 2 − b 2 4 , =<2>+2c^<2>-b^<2>><4>>>,> m c = 2 a 2 + 2 b 2 − c 2 4 , =<2>+2b^<2>-c^<2>><4>>>,> где m a , m b , m c , m_> — медианы к сторонам треугольника a , b , c соответственно.

Читайте также:  Как не убивать пендлтонов

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

m a 2 + m b 2 + m c 2 = 3 4 ( a 2 + b 2 + c 2 ) +m_^<2>+m_^<2>=<4>>(a^<2>+b^<2>+c^<2>)> .

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

a = 2 3 − m a 2 + 2 m b 2 + 2 m c 2 = 2 ( b 2 + c 2 ) − 4 m a 2 = b 2 2 − c 2 + 2 m b 2 = c 2 2 − b 2 + 2 m c 2 , <3>><2>+2m_^<2>+2m_^<2>>>=<2>+c^<2>)-4m_^<2>>>=<2>><2>>-c^<2>+2m_^<2>>>=<2>><2>>-b^<2>+2m_^<2>>>,> b = 2 3 − m b 2 + 2 m a 2 + 2 m c 2 = 2 ( a 2 + c 2 ) − 4 m b 2 = a 2 2 − c 2 + 2 m a 2 = c 2 2 − a 2 + 2 m c 2 , <2><3>>^<2>+2m_^<2>+2m_^<2>>>=<2>+c^<2>)-4m_^<2>>>=<2>><2>>-c^<2>+2m_^<2>>>=<2>><2>>-a^<2>+2m_^<2>>>,> c = 2 3 − m c 2 + 2 m b 2 + 2 m a 2 = 2 ( b 2 + a 2 ) − 4 m c 2 = b 2 2 − a 2 + 2 m b 2 = a 2 2 − b 2 + 2 m a 2 , <2><3>>^<2>+2m_^<2>+2m_^<2>>>=<2>+a^<2>)-4m_^<2>>>=<2>><2>>-a^<2>+2m_^<2>>>=<2>><2>>-b^<2>+2m_^<2>>>,> где m a , m b , m c ,m_> — медианы к соответствующим сторонам треугольника, a , b , c — стороны треугольника.

Площадь S любого треугольника, выраженная через длины его медиан:

S = 4 3 σ ( σ − m a ) ( σ − m b ) ( σ − m c ) , <3>>)(sigma -m_)>>,> где σ = ( m a + m b + m c ) / 2 +m_)/2> — полусумма длин медиан.

2. Находите координаты точки М как середины стороны ВС и составляете уравнение медианы АМ с помощью уравнения прямой, проходящей через две данные точки.

3. Аналогично находите координаты точки Н как середины АС и составляете уравнение прямой ВН.

Из школьного курса геометрии хорошо известен признак равенства треугольников по двум сторонам и углу между ними, а именно:

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 1).

Естественно поставить вопрос о том, будут ли равны треугольники, если соответствующие равные углы в треугольниках не заключены между равными сторонами. Верно ли, что если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.

Оказывается это неверно. Приведем пример. Рассмотрим окружность и ее хорду AB (рис. 2). С центром в точке A проведем другую окружность, пересекающую первую окружность в некоторых точках C и C1. Тогда в треугольниках ABC и ABC1 AB — общая сторона, однако треугольники ABC и ABC1 не равны.

В формулировки признаков равенства треугольников можно включать не только стороны и углы, но и другие элементы треугольников. Рассмотрим несколько формулировок признаков равенства треугольников по трем элементам, включающим стороны, углы, высоты, биссектрисы и медианы треугольников. Выясним справедливость соответствующих признаков.

Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника, то такие треугольники равны.

Пусть в треугольниках ABC и A1B1C1 С = С1, AB = A1B1, высота AH равна высоте A1H1 (рис. 3). Докажем, что треугольники ABC и A1B1C1 равны.

Прямоугольные треугольники ABH и A1B1H1 равны по катету и гипотенузе. Значит, Учитывая, что С = С1, имеем равенство A = A1. Таким образом, в треугольниках ABC и A1B1C1

Читайте также:  Электронный градусник где лучше мерить

AB = A1B1, A = A1, B = B1.

Следовательно, эти треугольники равны по стороне и двум прилежащим к ней углам.

Пусть угол, сторона, прилежащая к этому углу, и высота, опущенная на другую сторону, прилежащую к данному углу, одного треугольника соответственно равны углу, стороне и высоте другого треугольника (рис. 4).

Приведем пример, показывающий, что равенства указанных элементов треугольников не достаточно для равенства самих треугольников.

Рассмотрим прямоугольные треугольники ABH и A1B1H1 ( H = H1 = 90 o ), в которых

AB = A1B1, B = B1, AH = A1H1

AB = A1B1, B = B1,

высоты AH и A1H1 равны, однако сами треугольники не равны.

Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника, то такие треугольники равны.

ACD = A1C1D1.

Аналогично, треугольники BCD и B1C1D1 равны по трем сторонам. Следовательно,

BCD = B1C1D1.

Значит, С = С1 и треугольники ABC и A1B1C1 равны по двум сторонам и углу между ними.

Пусть угол, сторона, прилежащая к этому углу, и медиана, проведенная к этой стороне, одного треугольника соответственно равны углу, стороне и медиане другого треугольника (рис. 7).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Рассмотрим окружность с центром в точке M (рис. 8). Проведем два диаметра AB и A1B1. Через точки A, A1, M проведем еще одну окружность и выберем на ней точку C, как показано на рисунке. В треугольниках ABC и A1B1C

медиана СM — общая. Однако треугольники не равны.

Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника, то такие треугольники равны.

Точки O и O1 пересечения медиан данных треугольников делят медианы в отношении 2 : 1, считая от вершины. Значит, треугольники ABO и A1B1O1 равны по трем сторонам. Следовательно,

BAO = B1A1O1,

значит, треугольники ABM и A1B1M1 равны по двум сторонам и углу между ними. Поэтому

ABC = A1B1C1.

Аналогично доказывается, что

BAC = B1A1C1.

Таким образом, треугольники ABC и A1B1C1 равны по стороне и двум прилежащим к ней углам.

Пусть угол и две медианы, проведенные к его сторонам, одного треугольника соответственно равны углу и двум медианам другого треугольника (рис. 10).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Для этого рассмотрим две равные окружности с центрами в точках O1 и O2, касающиеся друг друга в точке M (рис. 11).

Проведем в одной из них хорду AB и прямую AM, пересекающую вторую окружность в некоторой точке C. Проведем отрезок BC. Получим треугольник ABC. Проведем в нем медиану CK и обозначим O точку, делящую ее в отношении 2 : 1, считая от вершины C. Проведем окружность с центром в точке O, радиуса OC, пересекающую вторую окружность в точке C1. Проведем прямую C1M и обозначим A1 ее точку пересечения с первой окружностью. Обозначим K1 точку пересечения хорды A1B и прямой C1O. В треугольниках ABC и A1BC1 A = A1, медианы CK и C1K1 равны, медиана BM — общая. Однако треугольники ABC и A1BC1 не равны.

Читайте также:  Через какую программу создавать презентации

Ели две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника, то такие треугольники равны.

Продолжим стороны AC и A1C1 и отложим на их продолжениях отрезки (рис. 12). Тогда

Треугольники BCE и B1C1E1 равны по трем сторонам. Значит, E = E1 и BE = B1E1. Треугольники ABE и A1B1E1 равны по двум сторонам и углу между ними. Значит, AB = A1B1. Таким образом, треугольники ABC и A1B1C1 равны по трем сторонам.

Пусть угол, сторона, прилежащая к этому углу, и биссектриса, проведенная к другой стороне, прилежащей к данному углу, одного треугольника соответственно равны углу, стороне и биссектрисе другого треугольника (рис. 13).

Пример треугольников ABC и ABC1, изображенных на рисунке 14, показывает, что равенства указанных элементов не достаточно для равенства самих треугольников.

Действительно, в треугольниках ABC и ABC1 B — общий, AB — общая сторона, биссектрисы AD и AD1 равны. Однако треугольники ABC и ABC1 не равны.

Пусть сторона, медиана и высота, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника (рис. 15).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Для этого рассмотрим окружность и угол с вершиной в центре A этой окружности (рис. 16). Отложим на его стороне отрезок AB, больший диаметра, и через его середину K проведем прямую, параллельную другой стороне угла, и пересекающую окружность в некоторых точках M и M1. Проведем прямые BM, BM1 и точки их пересечения со стороной угла обозначим соответственно C и C1. Тогда в треугольниках ABC и ABC1 сторона AB — общая, высота BH — общая, медианы AM и AM1 равны, однако треугольники ABC и ABC1 не равны.

Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.

Два треугольника равны, если три медианы одного треугольника соответственно равны трем медианам другого треугольника.

Пусть O и O1 — точки пересечения медиан данных треугольников. Заметим, что медианы OM и O1M1 треугольников ABO и A1B1O1 равны, так как они составляют одну третью часть соответствующих медиан данных треугольников.

По признаку равенства треугольников, доказанному нами под номером 3, треугольники ABO и A1B1O1 равны, значит, AB = A1B1.

Два треугольника равны, если три высоты одного треугольника соответственно равны трем высотам другого треугольника.

Обозначим стороны треугольников соответственно a, b, c и a1, b1, c1, а соответствующие высоты ha, bb, hc и h1a, h1b, h1c. Имеют место равенства aha = bhb = chc и a1h1a = b1h1b = c1h1c. Разделив почленно первые равенства на вторые, получим равенства из которых следует, что треугольники ABC и A1B1C1 подобны. Так как соответствующие высоты этих треугольников равны, то они не только подобны, но и равны.

«>

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector