No Image

Физический смысл напряженности магнитного поля

СОДЕРЖАНИЕ
7 просмотров
10 марта 2020
Напряжённость магнитного поля
H → <displaystyle <vec >>
Размерность L −1 I
Единицы измерения
СИ А/м
СГС Э
Примечания
векторная величина

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M . Обычно обозначается символом Н .

H = 1 μ 0 B − M , <displaystyle mathbf =<frac <1><mu _<0>>>mathbf -mathbf ,>

где μ 0 <displaystyle mu _<0>> — магнитная постоянная.

H = B − 4 π M . <displaystyle mathbf =mathbf -4pi mathbf .>

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот, намагниченность M зависит линейно от приложенного магнитного поля с индукцией B :

M = α B . <displaystyle mathbf =alpha mathbf .>

Однако исторически принято эту линейную зависимость описывать не коэффициентом α <displaystyle alpha > , а использовать связанные величины — магнитную восприимчивость χ <displaystyle chi > или магнитную проницаемость μ <displaystyle mu > :

M = χ 1 + 4 π χ B = μ − 1 4 π μ B . <displaystyle mathbf =<frac <chi ><1+4pi chi >>mathbf =<frac <mu -1><4pi mu >>mathbf .>

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4 π ) А/м ≈ 79,5775 А/м.

1 А/м = 4 π /1000 Э ≈ 0,01256637 Э.

Содержание

Физический смысл [ править | править код ]

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля ( Н ) совпадает с вектором магнитной индукции ( B ) с точностью до коэффициента, равного 1 в СГС и μ 0 <displaystyle mu _<0>> в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором магнитной индукции B поля, которое было бы создано этой катушкой при отсутствии сердечника. B в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

Читайте также:  Windows 10 home wsus

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём состоит её ценность: ведь H создает так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля [1] . Энергия магнитного поля как такового выражается только через фундаментальную величину B . Тем не менее видно, что величина H феноменологическая и тут весьма удобна.

Для описания магнитного поля используются две его основные характеристики — индукция B → и напряженность H → . Эти величины связаны между собой. Рассмотрим, что такое напряженность магнитного поля, чему она равна, каков физический смысл этой величины.

Напряженность магнитного поля

Напряженность магнитного поля — векторная физическая величина, в общем случае равная разности векторов индукции магнитного поля B → и намагниченности P m → .

Напряженность обозначается буквой Н → . Единица измерения напряженности магнитного поля в системе СИ — ампер на метр ( А м п е р м е т р ).

Формула напряженности магнитного поля:

Н → = 1 μ 0 B → — P m → .

Здесь коэффициент μ 0 — магнитная постоянная. μ 0 = 1 , 25663706 Н А 2 .

Читайте также:  Восстановить значок звука windows 7

Физический смысл напряженности магнитного поля

Индукция магнитного поля — силовая характеристика. Индукция определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью.

Напряженность поля характеризует густоту силовых линий (линий магнитной индукции).

Физический смысл напряженности магнитного поля

В вакууме или при отсутствии среды, способной к намагничиванию (например, в воздухе) напряженность магнитного поля совпадает с магнитной индукцией с точностью до коэффициента μ 0 .

В средах, способных к намагничиванию (магнетиках) напряженность несет смысл как бы "внешнего поля". Она совпадает с вектором магнитной индукции, который был бы, если бы магнетика не было.

Циркуляция вектора напряженности магнитного поля

Существует теорема о циркуляции магнитного поля. Это одна из основных теорем электродинамики, сформулированная Анри Ампером. Ее также иногда называют теоремой или законом Ампера. Теорема о циркуляции магнитного поля — своеобразный аналог теоремы Гаусса о циркуляции вектора напряженности электрического поля.

Теорема о циркуляции магнитного поля

Циркуляция вектора напряженности магнитного поля по замкнутому контуру равна алгебраической сумме токов проводимости, охваченных контуром, по которому рассматривается циркуляция.

Определить циркуляцию вектора напряженности для замкнутого контура L .

I 1 = 5 A , I 2 = 2 A , I 3 = 10 A , I 4 = 1 A .

По теореме о циркуляции:

Рассматриваемый контур охватывает токи I 1 , I 2 , I 3 .

Подставим значения c учетом указанных на рисунке направлений токов и вычислим циркуляцию:

​​​​​ ∮ H → d r → = ∑ I m = 5 A 12 A + 10 A = 13 A .

Магнитное поле — вихревое поле, которое не является потенциальным. Циркуляция вектора напряженности в общем случае отлична от нуля.

Для описания магнитного поля используются две его основные характеристики — индукция B → и напряженность H → . Эти величины связаны между собой. Рассмотрим, что такое напряженность магнитного поля, чему она равна, каков физический смысл этой величины.

Напряженность магнитного поля

Напряженность магнитного поля — векторная физическая величина, в общем случае равная разности векторов индукции магнитного поля B → и намагниченности P m → .

Читайте также:  Samsung np r510h драйвера

Напряженность обозначается буквой Н → . Единица измерения напряженности магнитного поля в системе СИ — ампер на метр ( А м п е р м е т р ).

Формула напряженности магнитного поля:

Н → = 1 μ 0 B → — P m → .

Здесь коэффициент μ 0 — магнитная постоянная. μ 0 = 1 , 25663706 Н А 2 .

Физический смысл напряженности магнитного поля

Индукция магнитного поля — силовая характеристика. Индукция определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью.

Напряженность поля характеризует густоту силовых линий (линий магнитной индукции).

Физический смысл напряженности магнитного поля

В вакууме или при отсутствии среды, способной к намагничиванию (например, в воздухе) напряженность магнитного поля совпадает с магнитной индукцией с точностью до коэффициента μ 0 .

В средах, способных к намагничиванию (магнетиках) напряженность несет смысл как бы "внешнего поля". Она совпадает с вектором магнитной индукции, который был бы, если бы магнетика не было.

Циркуляция вектора напряженности магнитного поля

Существует теорема о циркуляции магнитного поля. Это одна из основных теорем электродинамики, сформулированная Анри Ампером. Ее также иногда называют теоремой или законом Ампера. Теорема о циркуляции магнитного поля — своеобразный аналог теоремы Гаусса о циркуляции вектора напряженности электрического поля.

Теорема о циркуляции магнитного поля

Циркуляция вектора напряженности магнитного поля по замкнутому контуру равна алгебраической сумме токов проводимости, охваченных контуром, по которому рассматривается циркуляция.

Определить циркуляцию вектора напряженности для замкнутого контура L .

I 1 = 5 A , I 2 = 2 A , I 3 = 10 A , I 4 = 1 A .

По теореме о циркуляции:

Рассматриваемый контур охватывает токи I 1 , I 2 , I 3 .

Подставим значения c учетом указанных на рисунке направлений токов и вычислим циркуляцию:

​​​​​ ∮ H → d r → = ∑ I m = 5 A 12 A + 10 A = 13 A .

Магнитное поле — вихревое поле, которое не является потенциальным. Циркуляция вектора напряженности в общем случае отлична от нуля.

Комментировать
7 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector