No Image

Формула перевода десятичного числа в двоичное

СОДЕРЖАНИЕ
5 просмотров
10 марта 2020

В одном из наших материалов мы рассмотрели определение двоичного числа. Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

Позиционные системы счисления

Название системы

Основание

Алфавит

Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число

Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.

Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

Способ №1.

Допустим, требуется перевести число 637 десятичной системы в двоичную систему.

Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.

В нашем случае это 9, т.к. 2 9 =512, а 2 10 =1024, что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.

Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256. Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.

2 7 =128 > 125, значит и восьмой разряд будет нулём.

2 6 =64, то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.

2 5 =32 и видим, что 32 4 =16 1001111ххх. Остаток 29-16=13.

2 3 =8 10011111хх. 13-8=5

2 2 =4 10011111хх, остаток 5-4=1.

2 1 =2 > 1 => 100111110х, остаток 2-1=1.

2 0 =1 => 1001111101.

Это и будет конечный результат.

Способ №2.

Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

  1. Разделим an−1an−2. a1a=an−1⋅2 n−1 +an−2⋅2 n−2 +. +a⋅2 0 на 2.
  2. Частное будет равно an−1⋅2n−2+. +a1, а остаток будет равен
  3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
  4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a,a1,a2. an−1, которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
  5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.

Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

Получили 1110=10112.

Читайте также:  Как перепрошить lg k10

Пример:

Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку "Перевести". Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число 6 3 7 2
позиция 3 2 1

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления — из множества цифр <0,1>, в шестнадцатеричной системе счисления — из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·2 6 + 0 ·2 5 + 1·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0 + 0·2 -1 + 0·2 -2 + 1·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Читайте также:  Как писать перечеркнутым текстом в контакте

Здесь A -заменен на 10, B — на 11, C- на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
2 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0.428
x 2
0.856
x 2
1 0.712
x 2
1 0.424
x 2
0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Читайте также:  Kings bounty чистое око

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0.25
x 2
0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

Поставить LIKE и поделиться ссылкой
  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Ура. Вам стало интересно как получилось данное число

Вы ввели число: в системе счисления и хотите перевести его в .
Для этого переведем его сначала в десятичную вот так :

  1. Введите число которое надо перевести.
  2. Укажите его систему счисления.
  3. Укажите в какую систему счисления переводить.
  4. Нажмите кнопку "Перевести".

Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.

После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа "Его система счисления".

Если Вы не нашли своей системы, то выберите графу "другая" и появится поле ввода . В это поле необходимо вписать основание системы одним числом без пробелов.
Далее необходимо выбрать в какую систему хотите перевести данное число. Если Вы опять не нашли нужной системы то введите ее в графе "другая".

После нажмите кнопку "ПЕРЕВЕСТИ" и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.

Научиться переводить число из одной системы счисления в другую очень просто.

Любое число может быть легко переведено в десятичную систему по следующему алгоритму:

Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.

Комментировать
5 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector